PROFIL	THE			TNI PT for Accreditation						
			Fields of	Proficiency Testing with	n PTRLs					
	TNI			Drinking Water						
PROG	RAM		E	Effective: October 1, 2021	1	1				
Matrix	EPA	TNI	Analyte	Conc Range		Acceptance Criteria ^{1,2,3,4}			TNI PTRL ⁵	
	-	Analyte			а	b	С	d		
	Code	Code								
			Radiochemistry	pCi/L (except as noted)					pCi/L	
Drinking Water	0001	2830	Gross Alpha	7 to 75	0.8586	1.4802	0.1610	1.1366	3.0	
Drinking Water	0002	2840	Gross Beta	8 to 75	0.8508	2.9725	0.0571	2.9372	3.0	
Drinking Water	0008	2875	lodine-131	3 to 30	0.9711	0.8870	0.0624	0.6455	2.1	
Drinking Water	0012	2965	Radium-226	1 to 20	0.9253	0.3175	0.0942	0.0988	0.86	
Drinking Water	0013	2970	Radium-228	2 to 20	0.9243	0.2265	0.1105	0.3788	0.88	
Drinking Water	0014	3055	Natural Uranium	2 to 70	0.9568	0.0773	0.0668	0.2490	1.2	
Drinking Water	0014	1184	Uranium (mass)	3 to 104 ug/L	0.9568	0.1153	0.0668	0.3716	1.8 ug/L	
Drinking Water	0009	2995	Strontium-89	10 to 70	0.9648	0.1591	0.0379	2.6203	3.8	
Drinking Water	0010	3005	Strontium-90	3 to 45	0.9369	0.2279	0.0902	0.5390	1.4	
Drinking Water	0011	3030	Tritium	1000 to 24000	0.9883	-46.4776	0.0532	38.8382	760	
			Gamma Emitters ⁶							
Drinking Water	0007	2765	Barium-133	10 to 100	0.9684	-0.1424	0.0503	1.0737	6.4	
Drinking Water	0005	2800	Cesium-134 ⁷	10 to 100	0.9369	0.0845	0.0482	0.9306	6.6	
Drinking Water	0006	2805	Cesium-137 ⁷	20 to 240	1.0225	0.2624	0.0347	1.5185	16	
Drinking Water	0003	2815	Cobalt-60	10 to 120	1.0257	0.3051	0.0335	1.3315	7.2	
Drinking Water	0004	3070	Zinc-65	30 to 360	1.0495	0.1245	0.0530	1.8271	25	

TNI PT for Accre	ditation							
Fields of Proficiency Tes	ting with PTRLs							
TNI Drinking Water								
Effective: October 1, 2021								
1) Acceptance limits are set at the Mean ± 2 SD								
(Mean = a*T + b; SD = c*T + d where T is the assigned value).								
2) If the lower acceptance limit generated using the criteria contained in this table is less than (<) 10% of the assigned value, the lower acceptance limits are set							
at 10% of the assigned value.								
3) If the lower acceptance limit generated using the criteria contained in this table is greater than	n (>) 90% of the assigned value, the lower acceptance limits are set							
at 90% of the assigned value.								
4) If the upper acceptance limit generated using the criteria contained in this table is less than (<	<) 110% of the assigned value, the upper acceptance limits are set							
at 110% of the assigned value.								
5) TNI Proficiency Testing Reporting Limit (PTRL) is a statistically derived value that represents	the lowest acceptable concentration for an analyte in a proficiency test							
sample, if the analyte is spiked into the proficiency test sample.								
TNI PTRLs are also used by PT Providers to set the assigned value for unspiked analytes. For a	all analytes with an assigned value equal to cDTPL, the DT Dravider							
must verify that the PT sample does not contain the analyte at a concentration greater than or ec								
mast verify that the 1-1 sample does not contain the analyte at a concentration greater than of et								
Refer to the "TNI V1M1 2016 Standard Update Guidance on Proficiency Testing Reporting Limit	(PTRL)", GUID-3-114-Rev0, October 15, 2018 for further information.							
6) Laboratories seeking or maintaining TNI accreditation for Gamma (Photon) Emitters must me	et TNI PT requirements for all Gamma Emitter							
analytes in the Fields of Proficiency Testing in a given PT study, by technology/method (Barium-								
7) Laboratories seeking or maintaining TNI accreditation for Radioactive Cesium must meet TNI								
analytes in the Fields of Proficiency Testing in a given PT study, by technology/method (Cesium	-134, Cesium-137).							